se.uu.it.cp

InductiveClassifier

Related Doc: package cp

class InductiveClassifier[A <: UnderlyingAlgorithm[DataPoint], DataPoint] extends Serializable

Inductive conformal classification model.

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. InductiveClassifier
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new InductiveClassifier(alg: A, alphas: Seq[Seq[Double]])

    alg

    an underlying algorithm

    alphas

    nonconformity scores computed from a calibration set (which is unseen to the underlying algorithm)

Value Members

  1. final def !=(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  4. val alg: A

    an underlying algorithm

  5. val alphas: Seq[Seq[Double]]

    nonconformity scores computed from a calibration set (which is unseen to the underlying algorithm)

  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. def mondrianPv(features: Seq[Double]): IndexedSeq[Double]

    Given a feature sequence returns a p-value for each class.

    Given a feature sequence returns a p-value for each class.

    returns

    a sequence of p-values (one for each class)

  15. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  18. def predict(features: Seq[Double], significance: Double): Set[Double]

    Computes a prediction set for a feature sequence.

    Computes a prediction set for a feature sequence.

    features

    a feature sequence

    significance

    a significance level bigger than 0 and smaller than 1

    returns

    prediction set

  19. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  20. def toString(): String

    Definition Classes
    AnyRef → Any
  21. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped